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Flow, rigid inclusion behaviour and associated structures in

simple shear have been an important subject of research in

structural geology and tectonics in the last two decades for

trying to understand kinematics and mechanics of natural

ductile shear zones. Previous work by Mandal and co-workers

has been of high quality and increased understanding of this

issue. However, Mandal et al. (2005) is potentially confusing,

because they use boundary conditions that include misconcep-

tions and parameter values that can hardly be found in nature.

Our comments on this paper focus on the choice of flow type,

boundary conditions and model parameter values, and their

implications on the understanding of natural systems.
1. Simple shear flow

Simple shear can be defined as a three-dimensional constant

volume flow where dv/dh is constant (v is the velocity along

channel length and h is its width) (Fig. 1). A good visualisation

of simple shear flow is the sliding of a deck of cards at constant

displacement, in which each unstrained card represents particle

paths (or stream lines in this case) and the end edges represent

the velocity profile. If we agree to this definition, then some of

the models in Mandal et al. (2005) are not simple shear flow,

and their fig. 4a is misleading because particles do not move at

identical velocities in adjacent streamlines as shown in the

figure. However, the title of the paper in discussion explicitly

refers to simple shear.
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2. Boundary conditions

Following Bons et al. (1997), Mandal et al. (2005) define

three sets of boundary conditions (p. 1604):

(a) Homogeneous shear displacement: “The first setting can

be compared with that adopted in shear box experiments,

where the model is deformed in simple shear by moving

plates at its four boundaries.”—this is a misconception of

shear boxes stemming from incorrectly designed appara-

tuses. As can be seen from fig. 1.1-1 of Bird et al. (2002)

(theory) and from fig. 8.9a of Ghosh (1993) (apparatus),

simple shear flow is driven by only two walls, the lateral

walls to which the viscous matrix must adhere and not by

the end walls (lateral walls of Mandal et al., 2005), which

must be thoroughly lubricated and only serve to avoid

collapse of the viscous matrix under its own weight (see

also Marques and Coelho, 2001; Rosas et al., 2001, 2002;

Bose and Marques, 2004; Marques and Bose, 2004;

Marques et al., 2005). The major drawback of this

approach in numerical analysis in finite element model-

ling (FEM) is that pressure is not explicitly constrained by

the boundary settings in order to have a well-posed

problem.

(b) Unconstrained lateral boundaries: “. the setting at the

lateral boundaries (end boundaries in the present

discussion) is given in terms of a constant pressure.”

Flow under these conditions is not simple shear, as shown

by figs. 8a and b and 9b of Mandal et al. (2005). However,

if the domain is very long and narrow, flow in its central

part can approximate simple shear.

(c) Straight-out condition: “This boundary condition is

comparable with that in ring shear (cf. Bons et al.,

1997).”—this condition is not comparable with that of
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Fig. 1. Schematic representation of computational domain without inclusion. h and l are width and length of domain, respectively; v and Kv are velocities imposed at

lateral boundaries to induce simple shear flow in the linear viscous matrix filling the computational domain; a is the angular shear strain. Shear direction is parallel to

the X-axis. Black arrows at left end boundary represent the velocity profile of simple shear. P and Q are material particles displaced by simple shear flow to new

positions P 0 and Q 0, along displacement paths represented by horizontal lines. Half arrows close to lateral boundaries indicate sense of shear.
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a ring shear, because rotational Couette flow is not simple

shear (dv/dh is not constant) (cf. fig. 3.6-1a of Bird et al.,

2002). When the domain is large enough so that the flow

near the boundaries is not affected by the rigid inclusion,

the straight-out condition produces velocity profiles at the

boundaries similar to the ‘homogeneous shear displace-

ment’. However, as pressure is also constrained, straight-

out seems to be the best choice for simple shear conditions

at the end boundaries.
3. Model parameters

The parameters defined by Mandal et al. (2005) are (1)

model/inclusion dimension ratio (DR) and (2) model aspect

ratio (AR), which seem, in principle, a correct and sensible

choice. We agree with Mandal et al. (2005) that the choice of

AR is crucial for setting up a correct numerical experiment.

However, a great deal of the results and discussion of Mandal

et al. (2005) are based on domain ratios where the flow at end

boundaries is strongly affected by the presence of the rigid

inclusion, i.e. when AR and DR are smaller than 3–5. In such

cases, setting a simple shear condition at end boundaries is

incorrect and leads to erroneous results, because simple shear is

not the natural solution at those boundaries, as shown by the

graphs in Fig. 2. Moreover, these simulations are unrealistic, at

least for geology. What is the meaning of a model shear zone

with AR%1, as shown in all Mandal et al.’s figures from 6 to 9?

What is the meaning of a square shear zone with an embedded

inclusion only half, or one quarter, the size of the shear zone

length, as shown in their fig. 6?

We must clarify what Marques et al. (2005) did regarding

model parameters. Mandal et al. (2005) state that “In the

models of Marques et al. (2005), the value of S was varied by

changing both the model width and inclusion diameter but

keeping the model length constant. This implies that in their

analysis the model aspect ratio changed with changing S.” This
gives the reader the incorrect impression that Marques et al.

(2005) used inappropriate values for model parameters. In the

first paragraph of section 3.2, model settings, of Marques et al.

(2005), it is clearly stated that “The length (L) was set to at least

40 times the inclusion longest axis (e1).” Therefore, instead of

keeping the model length constant, Marques et al. (2005) tried

to keep the model aspect ratio always significantly greater than

one (length much greater than width, as in nature), at least with

a ratio that guaranteed imperceptible flow changes if model

aspect ratio were increased. The statement of Mandal et al.

(2005) that “It thus appears that the variation in the flow pattern

that they assign only to S, perhaps includes also the effect of

aspect ratio of the model.” leads the reader to the incorrect

conclusion that the results of Marques et al. (2005) do not

depend only on S. However, Marques et al. (2005) made a

sensible choice of model parameter values so that differences

due to domain ratios are in the second decimal, except when DR

approaches 1. Even DR values as small as 3–5 do not noticeably

affect the position of stagnation points in the straight-out

condition, despite this being the range of significant inclusion

influence upon simple shear flow. On the other hand, the graph

in fig. 6b of Mandal et al. (2005), which is supposed to reflect

the influence of DR, and DR alone, on position of stagnation

points, includes also the influence of S (cf. fig. 6a of Mandal

et al., 2005), because the authors have kept the domain square.

Therefore, their graph includes two variables, DR and S.

Otherwise it would be a straight line parallel to X, which means

that the stagnation points would always be in a similar position

for any given value of DR, keeping S constant.

4. Relationship with nature

Two main characteristics of conceptual models in geology

are (1) their prediction capability and (2) their relationship with

natural processes. Shear zones in nature are commonly (if not

always) narrow (relatively) and long, which means that their

AR must be much greater than one. Why then use model shear
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Fig. 2. Graphs of velocity profiles at end boundaries of a square domain, similar

to the DRZ2 model in fig. 6a of Mandal et al. (2005). In the calculations, we

use a circular inclusion with radius equal to 1 so that the end boundaries are at 1

and K1 for DRZ2. Note the great deviations of imposed simple shear

velocities from the natural solution at K1 for DRZ100, especially regarding

velocity along Y (b).
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zones with AR equal or less than one, or DR!5, and why

discuss them in relation to geology? One must be sensible and

find an aspect ratio beyond which the results do not differ

appreciably. In the past, many authors used square domains in

FEM, with dimensions relatively small compared with the

embedded inclusion, but that was due to computational

limitations at that time.
5. Conclusions

Model dimension ratios (AR and DR) must have values much

greater than one; preferably greater than five inclusion
diameters, the region where simple shear flow is significantly

disturbed by the rigid inclusion. Otherwise one imposes simple

shear flow where it cannot exist, and model geometry has no

relationship with nature.

The question of flow and rigid inclusion behaviour in

simple shear should be restricted to finite or infinite shear

zone width analysis, once it is established that the model

aspect ratio should be much greater than one to be

compatible with nature. What is the natural counterpart of

a model shear zone with infinite width and length? The

strict answer is that there is no counterpart, because infinity

is a mathematical abstraction. One could argue that it is a

good approximation if the natural S is much greater than

one. However, this approach is not able to explain many

features found in ductile shear zones, and alternative

solutions must be sought. One solution seems to be, for

example, confined flow. We do not agree with the

conclusion of Mandal et al. (2005) that “Analytical

solutions for the flow field suggest that . there cannot

be any stagnation points in the flow around a rotating

inclusion.” It has been shown that stagnation points exist at

a finite distance from the inclusion in incompressible finite

shear zones. In particular, Marques et al. (2005) showed

that this distance increases linearly with S. Therefore,

stagnation points must also exist in infinite shear zones, but

at an infinite distance to each side of the inclusion.

Therefore, strictly speaking, the flow pattern should always

be bow tie-shaped, although stagnation points can be

positioned at infinity, in which case the pattern may seem

to be eye-shaped because stagnation points are far apart and

out of sight.

FEM is a very powerful tool when used with a direct relation

to the natural process. Otherwise, it can produce results that are

irrelevant to the deformation in rocks. We should move

towards more realistic models: dynamic and three-dimen-

sional, as opposed to the current static and two-dimensional

models, instead of using parameters that do not influence a

well-constrained model shear zone, which mimic deformation

in rocks.
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