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Flow, rigid inclusion behaviour and associated structures in
simple shear have been an important subject of research in
structural geology and tectonics in the last two decades for
trying to understand kinematics and mechanics of natural
ductile shear zones. Previous work by Mandal and co-workers
has been of high quality and increased understanding of this
issue. However, Mandal et al. (2005) is potentially confusing,
because they use boundary conditions that include misconcep-
tions and parameter values that can hardly be found in nature.
Our comments on this paper focus on the choice of flow type,
boundary conditions and model parameter values, and their
implications on the understanding of natural systems.

1. Simple shear flow

Simple shear can be defined as a three-dimensional constant
volume flow where dv/dh is constant (v is the velocity along
channel length and £ is its width) (Fig. 1). A good visualisation
of simple shear flow is the sliding of a deck of cards at constant
displacement, in which each unstrained card represents particle
paths (or stream lines in this case) and the end edges represent
the velocity profile. If we agree to this definition, then some of
the models in Mandal et al. (2005) are not simple shear flow,
and their fig. 4a is misleading because particles do not move at
identical velocities in adjacent streamlines as shown in the
figure. However, the title of the paper in discussion explicitly
refers to simple shear.
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2. Boundary conditions

Following Bons et al. (1997), Mandal et al. (2005) define
three sets of boundary conditions (p. 1604):

(a) Homogeneous shear displacement: “The first setting can
be compared with that adopted in shear box experiments,
where the model is deformed in simple shear by moving
plates at its four boundaries.”—this is a misconception of
shear boxes stemming from incorrectly designed appara-
tuses. As can be seen from fig. 1.1-1 of Bird et al. (2002)
(theory) and from fig. 8.9a of Ghosh (1993) (apparatus),
simple shear flow is driven by only two walls, the lateral
walls to which the viscous matrix must adhere and not by
the end walls (lateral walls of Mandal et al., 2005), which
must be thoroughly lubricated and only serve to avoid
collapse of the viscous matrix under its own weight (see
also Marques and Coelho, 2001; Rosas et al., 2001, 2002;
Bose and Marques, 2004; Marques and Bose, 2004;
Marques et al., 2005). The major drawback of this
approach in numerical analysis in finite element model-
ling (FEM) is that pressure is not explicitly constrained by
the boundary settings in order to have a well-posed
problem.

(b) Unconstrained lateral boundaries: ... the setting at the
lateral boundaries (end boundaries in the present
discussion) is given in terms of a constant pressure.”
Flow under these conditions is not simple shear, as shown
by figs. 8a and b and 9b of Mandal et al. (2005). However,
if the domain is very long and narrow, flow in its central
part can approximate simple shear.

(c) Straight-out condition: “This boundary condition is
comparable with that in ring shear (cf. Bons et al,
1997).”—this condition is not comparable with that of
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Fig. 1. Schematic representation of computational domain without inclusion. 4 and / are width and length of domain, respectively; v and — v are velocities imposed at
lateral boundaries to induce simple shear flow in the linear viscous matrix filling the computational domain; a is the angular shear strain. Shear direction is parallel to
the X-axis. Black arrows at left end boundary represent the velocity profile of simple shear. P and Q are material particles displaced by simple shear flow to new
positions P’ and Q’, along displacement paths represented by horizontal lines. Half arrows close to lateral boundaries indicate sense of shear.

aring shear, because rotational Couette flow is not simple
shear (dv/dh is not constant) (cf. fig. 3.6-1a of Bird et al.,
2002). When the domain is large enough so that the flow
near the boundaries is not affected by the rigid inclusion,
the straight-out condition produces velocity profiles at the
boundaries similar to the ‘homogeneous shear displace-
ment’. However, as pressure is also constrained, straight-
out seems to be the best choice for simple shear conditions
at the end boundaries.

3. Model parameters

The parameters defined by Mandal et al. (2005) are (1)
model/inclusion dimension ratio (Dg) and (2) model aspect
ratio (Ar), which seem, in principle, a correct and sensible
choice. We agree with Mandal et al. (2005) that the choice of
Ag is crucial for setting up a correct numerical experiment.
However, a great deal of the results and discussion of Mandal
et al. (2005) are based on domain ratios where the flow at end
boundaries is strongly affected by the presence of the rigid
inclusion, i.e. when Ag and Dy are smaller than 3-5. In such
cases, setting a simple shear condition at end boundaries is
incorrect and leads to erroneous results, because simple shear is
not the natural solution at those boundaries, as shown by the
graphs in Fig. 2. Moreover, these simulations are unrealistic, at
least for geology. What is the meaning of a model shear zone
with Ag <1, as shown in all Mandal et al.’s figures from 6 to 9?
What is the meaning of a square shear zone with an embedded
inclusion only half, or one quarter, the size of the shear zone
length, as shown in their fig. 67

We must clarify what Marques et al. (2005) did regarding
model parameters. Mandal et al. (2005) state that “In the
models of Marques et al. (2005), the value of S was varied by
changing both the model width and inclusion diameter but
keeping the model length constant. This implies that in their
analysis the model aspect ratio changed with changing S.” This

gives the reader the incorrect impression that Marques et al.
(2005) used inappropriate values for model parameters. In the
first paragraph of section 3.2, model settings, of Marques et al.
(2005), it is clearly stated that “The length (L) was set to at least
40 times the inclusion longest axis (e;).” Therefore, instead of
keeping the model length constant, Marques et al. (2005) tried
to keep the model aspect ratio always significantly greater than
one (length much greater than width, as in nature), at least with
a ratio that guaranteed imperceptible flow changes if model
aspect ratio were increased. The statement of Mandal et al.
(2005) that “It thus appears that the variation in the flow pattern
that they assign only to S, perhaps includes also the effect of
aspect ratio of the model.” leads the reader to the incorrect
conclusion that the results of Marques et al. (2005) do not
depend only on S. However, Marques et al. (2005) made a
sensible choice of model parameter values so that differences
due to domain ratios are in the second decimal, except when Dg
approaches 1. Even Dy values as small as 3—5 do not noticeably
affect the position of stagnation points in the straight-out
condition, despite this being the range of significant inclusion
influence upon simple shear flow. On the other hand, the graph
in fig. 6b of Mandal et al. (2005), which is supposed to reflect
the influence of Dg, and Dy alone, on position of stagnation
points, includes also the influence of S (cf. fig. 6a of Mandal
et al., 2005), because the authors have kept the domain square.
Therefore, their graph includes two variables, Dgr and S.
Otherwise it would be a straight line parallel to X, which means
that the stagnation points would always be in a similar position
for any given value of Dg, keeping S constant.

4. Relationship with nature

Two main characteristics of conceptual models in geology
are (1) their prediction capability and (2) their relationship with
natural processes. Shear zones in nature are commonly (if not
always) narrow (relatively) and long, which means that their
Agr must be much greater than one. Why then use model shear
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Fig. 2. Graphs of velocity profiles at end boundaries of a square domain, similar
to the Dr =2 model in fig. 6a of Mandal et al. (2005). In the calculations, we
use a circular inclusion with radius equal to 1 so that the end boundaries are at 1
and —1 for Dgr=2. Note the great deviations of imposed simple shear
velocities from the natural solution at —1 for Dg =100, especially regarding
velocity along Y (b).

zones with Ar equal or less than one, or Dr <5, and why
discuss them in relation to geology? One must be sensible and
find an aspect ratio beyond which the results do not differ
appreciably. In the past, many authors used square domains in
FEM, with dimensions relatively small compared with the
embedded inclusion, but that was due to computational
limitations at that time.

5. Conclusions

Model dimension ratios (Ag and Dr) must have values much
greater than one; preferably greater than five inclusion

diameters, the region where simple shear flow is significantly
disturbed by the rigid inclusion. Otherwise one imposes simple
shear flow where it cannot exist, and model geometry has no
relationship with nature.

The question of flow and rigid inclusion behaviour in
simple shear should be restricted to finite or infinite shear
zone width analysis, once it is established that the model
aspect ratio should be much greater than one to be
compatible with nature. What is the natural counterpart of
a model shear zone with infinite width and length? The
strict answer is that there is no counterpart, because infinity
is a mathematical abstraction. One could argue that it is a
good approximation if the natural S is much greater than
one. However, this approach is not able to explain many
features found in ductile shear zones, and alternative
solutions must be sought. One solution seems to be, for
example, confined flow. We do not agree with the
conclusion of Mandal et al. (2005) that “Analytical
solutions for the flow field suggest that there cannot
be any stagnation points in the flow around a rotating
inclusion.” It has been shown that stagnation points exist at
a finite distance from the inclusion in incompressible finite
shear zones. In particular, Marques et al. (2005) showed
that this distance increases linearly with S. Therefore,
stagnation points must also exist in infinite shear zones, but
at an infinite distance to each side of the inclusion.
Therefore, strictly speaking, the flow pattern should always
be bow tie-shaped, although stagnation points can be
positioned at infinity, in which case the pattern may seem
to be eye-shaped because stagnation points are far apart and
out of sight.

FEM is a very powerful tool when used with a direct relation
to the natural process. Otherwise, it can produce results that are
irrelevant to the deformation in rocks. We should move
towards more realistic models: dynamic and three-dimen-
sional, as opposed to the current static and two-dimensional
models, instead of using parameters that do not influence a
well-constrained model shear zone, which mimic deformation
in rocks.
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